Integrated activated carbon adsorption and phytoremediation for sustainable domestic wastewater treatment
Keywords:
Eichhornia crassipes, Untreated, pollutants, removal efficiencies, combinedAbstract
Untreated domestic wastewater is a major environmental concern, particularly in urban areas where rapid population growth has outpaced wastewater management infrastructure. This study investigates the integration of activated carbon adsorption and phytoremediation using water hyacinth (Eichhornia crassipes) for effective and sustainable wastewater treatment. Activated carbon, with its high adsorption capacity, rapidly removed pollutants, achieving efficiencies of 66.5% for BOD and 69% for COD at a dose of 50 g/L. Phytoremediation provided gradual pollutant reduction over 28 days, reaching 40% for BOD and 46% for COD. The integrated system combined the rapid effectiveness of activated carbon with the long-term sustainability of phytoremediation, achieving cumulative removal efficiencies of 79.9% for BOD and 83.26% for COD. This hybrid approach aligns with sustainable development goals by leveraging natural processes and reducing operational costs. The results highlight its potential for scalable applications in resource-limited regions, offering an innovative solution for domestic wastewater management.
Downloads
References
[1] I. Ali, M. Asim, and T. A. Khan, “Low cost adsorbents for the removal of organic pollutants from wastewater,” J. Environ. Manage., vol. 113, pp. 170–183, 2012, doi: https://doi.org/10.1016/j.jenvman.2012.08.028.
[2] S. Babel and T. A. Kurniawan, “Low-cost adsorbents for heavy metals uptake from contaminated water: a review,” J. Hazard. Mater., vol. 97, no. 1, pp. 219–243, 2003, doi: https://doi.org/10.1016/S0304-3894(02)00263-7.
[3] D. Majid and A. R. Prabowo, “Ferrate(VI) performance on the halogenated benzene degradation: Degradation test and by-product analysis,” Mater. Today Proc., 2022, doi: https://doi.org/10.1016/j.matpr.2022.02.470.
[4] D. Majid and I. Kim, “Sintesis dan Aplikasi Ferrat sebagai Green Chemical dalam Pengolahan Limbah,” SNHRP, pp. 184–189, 2019.
[5] S. Rezania, S. M. Taib, M. F. Md Din, F. A. Dahalan, and H. Kamyab, “Comprehensive review on phytotechnology: Heavy metals removal by diverse aquatic plants species from wastewater,” J. Hazard. Mater., vol. 318, pp. 587–599, 2016, doi: https://doi.org/10.1016/j.jhazmat.2016.07.053.
[6] D. Majid, A. R. Prabowo, M. Al-Kholif, and S. Sugito, “Sintesis Ferrat sebagai Pendegradasi Senyawa Turunan Benzena,” JPSE (Journal Phys. Sci. Eng., vol. 3, no. 2, pp. 70–75, 2019, doi: 10.17977/um024v3i22018p070.
[7] M. Al Kholif, M. Rohmah, I. Nurhayati, D. Adi Walujo, and D. Dian Majid, “Penurunan Beban Pencemar Rumah Potong Hewan (RPH) Menggunakan Sistem Biofilter Anaerob,” J. Sains Teknol. Lingkung., vol. 14, no. 2, pp. 100–113, 2022, [Online]. Available: https://journal.uii.ac.id/JSTL/article/view/23979
[8] F. B. Laksono, D. Majid, and A. R. Prabowo, “System and eco-material design based on slow-release ferrate(vi) combined with ultrasound for ballast water treatment,” vol. 12, no. 1, pp. 401–408, 2022, doi: doi:10.1515/eng-2022-0042.
[9] W. Wang, S. Wu, X. Sui, and S. Cheng, “Phytoremediation of contaminated sediment combined with biochar: Feasibility, challenges and perspectives,” J. Hazard. Mater., vol. 465, p. 133135, 2024, doi: https://doi.org/10.1016/j.jhazmat.2023.133135.
[10] Muhammad Al Kholif, Muhammad Uke Dwi Putra, Joko Sutrisno, Sugito, Dian Majid, and Indah Nurhayati, “Peningkatan Kualitas Air Bersih Sumur Gali Menggunakan TeknologiFiltrasi,” J. Sains dan Teknol. Lingkung., vol. 16, no. 2, 2024.
[11] D. Majid, I.-K. Kim, F. B. Laksono, and A. R. Prabowo, “Oxidative Degradation of Hazardous Benzene Derivatives by Ferrate(VI): Effect of Initial pH, Molar Ratio and Temperature,” Toxics, vol. 9, no. 12, pp. 1–10, 2021, doi: 10.3390/toxics9120327.
[12] R. Nur, H. Kaimudin, and D. Majid, “Penggunaan Limbah Cangkang Keong Sawah ( Pila Ampullacea ) Sebagai Koagulan Dalam Menurunkan Kekeruhan Pada Limbah Cair Domestik,” pp. 1–7, 2024.
[13] M. Dian and K. Il-Kyu, “Degradation of Toluene by Liquid Ferrate(VI) and Solid Ferrate(VI) in Aqueous Phase,” J. Environ. Eng., vol. 144, no. 9, pp. 4018093 1–8, Sep. 2018, doi: 10.1061/(ASCE)EE.1943-7870.0001440.
[14] I. Nurhayati, S. Vigiani, and D. Majid, “Penurunan kadar besi dan kromium limbah cair laboratorium teknik lingkungan dengan pengenceran, koagulasi dan adsobsi,” ECOTROPHIC J. Ilmu Lingkung. (Journal Environ. Sci., vol. 14, p. 74, Jun. 2020, doi: 10.24843/EJES.2020.v14.i01.p07.
[15] M. S. Hidayat and D. Majid, “Uji efektivitas limbah aluminium foil sebagai koagulan recycle dalam menurunkan TSS dan COD limbah cair domestik,” Semin. Nas. Teknol. Ind., pp. 474–487, 2023, [Online]. Available: https://semnasti.unipasby.ac.id/proceedings/
[16] M. A. Febrianto, A. Sujiwa, M. Shofwan, and D. Majid, “Penurunan Kadar Bod, Cod Dan Turbidity Limbah Cair Industri Batik Melalui Metode Kombinasi Pretreatment Filtrasi Adsorpsi Dan Elektrokoagulasi,” J. Reka Lingkung., vol. 11, no. 3, pp. 258–269, 2024, doi: 10.26760/rekalingkungan.v11i3.258-269.
[17] M. Rajan and A. C.I, “Role of Activated Carbon in Water Treatment,” 2022. doi: 10.5772/intechopen.108349.
[18] V. K. Gupta and Suhas, “Application of low-cost adsorbents for dye removal – A review,” J. Environ. Manage., vol. 90, no. 8, pp. 2313–2342, 2009, doi: https://doi.org/10.1016/j.jenvman.2008.11.017.
[19] B. H. Hameed, D. K. Mahmoud, and A. L. Ahmad, “Sorption equilibrium and kinetics of basic dye from aqueous solution using banana stalk waste,” J. Hazard. Mater., vol. 158, no. 2, pp. 499–506, 2008, doi: https://doi.org/10.1016/j.jhazmat.2008.01.098.
[20] A. Ebrahimi, M. Sivakumar, C. McLauchlan, A. Ansari, and A. S. Vishwanathan, “A critical review of the symbiotic relationship between constructed wetland and microbial fuel cell for enhancing pollutant removal and energy generation,” J. Environ. Chem. Eng., vol. 9, no. 1, p. 105011, 2021, doi: https://doi.org/10.1016/j.jece.2020.105011.
[21] B. Dhir, Phytoremediation: Role of Aquatic Plants in Environmental Clean-Up. 2013. doi: 10.1007/978-81-322-1307-9.
[22] M. P. Ciria, M. L. Solano, and P. Soriano, “Role of Macrophyte Typha latifolia in a Constructed Wetland for Wastewater Treatment and Assessment of Its Potential as a Biomass Fuel,” Biosyst. Eng., vol. 92, no. 4, pp. 535–544, 2005, doi: https://doi.org/10.1016/j.biosystemseng.2005.08.007.
[23] B. Zhang et al., “Enhanced performance and mechanism of adsorption pretreatment for alleviating membrane fouling in AGMBR: Impact of structural variations in carbon adsorbents,” Sci. Total Environ., vol. 940, p. 173702, 2024, doi: https://doi.org/10.1016/j.scitotenv.2024.173702.
[24] A. H. A. Khan et al., “Sustainability of phytoremediation: Post-harvest stratagems and economic opportunities for the produced metals contaminated biomass,” J. Environ. Manage., vol. 326, p. 116700, 2023, doi: https://doi.org/10.1016/j.jenvman.2022.116700.
[25] O. El Kik, G. Lesage, F. Zaviska, A. Sauvêtre, M. Heran, and F. Lestremau, “Synergistic approach for enhanced wastewater treatment: Harnessing the potential of bioelectrochemical systems in integration with anaerobic membrane bioreactors,” J. Environ. Chem. Eng., vol. 12, no. 4, p. 113162, 2024, doi: https://doi.org/10.1016/j.jece.2024.113162.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Farhan Enggar Pangestu, Dian Majid, Sabrina Aufar Salma (Author)

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.