Enhancing domestic wastewater treatment efficiency through combined microbubble oxidation and pistia stratiotes phytoremediation

Authors

  • Nurika Pratama Putri Universitas PGRI Adi Buana Author
  • Dian Majid Universitas PGRI Adi Buana Author
  • Parama Diptya Widayaka Universitas Negeri Surabaya Author

Keywords:

BOD, COD, TSS, efficiency, treatment

Abstract

The increasing volume of domestic wastewater poses significant environmental challenges, necessitating innovative treatment methods to mitigate pollutants such as Biochemical Oxygen Demand (BOD), Chemical Oxygen Demand (COD), and Total Suspended Solids (TSS). This study explores the integration of microbubble oxidation and phytoremediation using Pistia stratiotes (water lettuce) to enhance wastewater treatment efficiency. Microbubble oxidation, conducted for 6 hours, reduced BOD, COD, and TSS concentrations by 30%, 25%, and 20%, respectively, leveraging its high surface area-to-volume ratio and oxygen transfer efficiency. Following this, Pistia stratiotes, applied at a density of 0.5 kg/m² for 28 days, achieved additional reductions of 59% in BOD, 42% in COD, and 41% in TSS. The combined treatment method achieved an overall reduction of 59%, 56%, and 53% for BOD, COD, and TSS, respectively. This study highlights the synergistic effects of combining microbubble oxidation, which increases pollutant bioavailability, and phytoremediation, which assimilates and degrades these pollutants. The findings demonstrate that this hybrid approach is a cost-effective, energy-efficient, and sustainable solution for domestic wastewater treatment, with potential applications in both resource-limited and large-scale settings.

Downloads

Download data is not yet available.

Author Biographies

  • Nurika Pratama Putri, Universitas PGRI Adi Buana

    Environmental Engineering Department

  • Dian Majid, Universitas PGRI Adi Buana

    Environmental Engineering Department

  • Parama Diptya Widayaka, Universitas Negeri Surabaya
    Universitas Negeri Surabaya

References

[1] S. Khuntia, S. Majumder, and P. Ghosh, “Microbubble-aided water and wastewater purification: A review,” Rev. Chem. Eng., vol. 28, pp. 191–221, Dec. 2012, doi: 10.1515/revce-2012-0007.

[2] L.-B. Chu, X.-H. Xing, A.-F. Yu, X.-L. Sun, and B. Jurcik, “Enhanced treatment of practical textile wastewater by microbubble ozonation,” Process Saf. Environ. Prot., vol. 86, no. 5, pp. 389–393, 2008, doi: https://doi.org/10.1016/j.psep.2008.02.005.

[3] D. Majid and A. R. Prabowo, “Ferrate(VI) performance on the halogenated benzene degradation: Degradation test and by-product analysis,” Mater. Today Proc., 2022, doi: https://doi.org/10.1016/j.matpr.2022.02.470.

[4] D. Majid and I. Kim, “Sintesis dan Aplikasi Ferrat sebagai Green Chemical dalam Pengolahan Limbah,” SNHRP, pp. 184–189, 2019.

[5] D. Majid, A. R. Prabowo, M. Al-Kholif, and S. Sugito, “Sintesis Ferrat sebagai Pendegradasi Senyawa Turunan Benzena,” JPSE (Journal Phys. Sci. Eng., vol. 3, no. 2, pp. 70–75, 2019, doi: 10.17977/um024v3i22018p070.

[6] M. Al Kholif, M. Rohmah, I. Nurhayati, D. Adi Walujo, and D. Dian Majid, “Penurunan Beban Pencemar Rumah Potong Hewan (RPH) Menggunakan Sistem Biofilter Anaerob,” J. Sains Teknol. Lingkung., vol. 14, no. 2, pp. 100–113, 2022, [Online]. Available: https://journal.uii.ac.id/JSTL/article/view/23979

[7] F. B. Laksono, D. Majid, and A. R. Prabowo, “System and eco-material design based on slow-release ferrate(vi) combined with ultrasound for ballast water treatment,” vol. 12, no. 1, pp. 401–408, 2022, doi: doi:10.1515/eng-2022-0042.

[8] Muhammad Al Kholif, Muhammad Uke Dwi Putra, Joko Sutrisno, Sugito, Dian Majid, and Indah Nurhayati, “Peningkatan Kualitas Air Bersih Sumur Gali Menggunakan TeknologiFiltrasi,” J. Sains dan Teknol. Lingkung., vol. 16, no. 2, 2024.

[9] D. Majid, I.-K. Kim, F. B. Laksono, and A. R. Prabowo, “Oxidative Degradation of Hazardous Benzene Derivatives by Ferrate(VI): Effect of Initial pH, Molar Ratio and Temperature,” Toxics, vol. 9, no. 12, pp. 1–10, 2021, doi: 10.3390/toxics9120327.

[10] M. Ali et al., “Domestic wastewater treatment by Pistia stratiotes in constructed wetland,” Sci. Rep., vol. 14, no. 1, p. 7553, 2024, doi: 10.1038/s41598-024-57329-y.

[11] R. Nur, H. Kaimudin, and D. Majid, “Penggunaan Limbah Cangkang Keong Sawah ( Pila Ampullacea ) Sebagai Koagulan Dalam Menurunkan Kekeruhan Pada Limbah Cair Domestik,” pp. 1–7, 2024.

[12] I. Nurhayati, S. Vigiani, and D. Majid, “Penurunan Kadar Besi (Fe), Kromium (Cr), COD dan BOD Limbah Cair Laboratorium dengan Pengenceran, Kougulasi dan Adsorbsi,” Ecotrophic, vol. 14(1), no. June, pp. 74–87, 2020.

[13] M. Dian and K. Il-Kyu, “Degradation of Toluene by Liquid Ferrate(VI) and Solid Ferrate(VI) in Aqueous Phase,” J. Environ. Eng., vol. 144, no. 9, pp. 4018093 1–8, Sep. 2018, doi: 10.1061/(ASCE)EE.1943-7870.0001440.

[14] I. W. Tuye, J. Sutrisno, and D. Majid, “Potensi salvinia molesta dan pistia stratiotes dalam penurunan kadar fosfat, BOD, dan COD pada limbah cair laundry,” WAKTU J. Tek. UNIPA, vol. 21, no. 02, Jul. 2023, doi: 10.36456/waktu.v21i02.7727.

[15] M. S. Hidayat and D. Majid, “Uji efektivitas limbah aluminium foil sebagai koagulan recycle dalam menurunkan TSS dan COD limbah cair domestik,” Semin. Nas. Teknol. Ind., pp. 474–487, 2023, [Online]. Available: https://semnasti.unipasby.ac.id/proceedings/

[16] R. Z. Marques et al., “Green solutions for antibiotic pollution: Assessing the phytoremediation potential of aquatic macrophytes in wastewater treatment plants,” Environ. Pollut., vol. 357, p. 124376, 2024, doi: https://doi.org/10.1016/j.envpol.2024.124376.

[17] S. S. Nair, R. Pinedo-Cuenca, T. Stubbs, S. J. Davis, P. B. Ganesan, and F. Hamad, “Contemporary application of microbubble technology in water treatment,” Water Sci. Technol., vol. 86, no. 9, pp. 2138–2156, Oct. 2022, doi: 10.2166/wst.2022.328.

[18] K. Nanda, V. Singh, S. Kumar, P. Sharma, and S. P. Singh, “8 - Waste mitigation through synergistic solutions with plants and microbes,” in Waste-to-Energy, P. Sharma, Y. W. Tong, S. Mohapatra, D. Purchase, H. K. Khuntia, and S. P. Singh, Eds. Elsevier, 2025, pp. 163–193. doi: https://doi.org/10.1016/B978-0-443-22356-3.00008-7.

[19] A. Maurya, D. Sharma, M. Partap, R. Kumar, and B. Bhargava, “Microbially-assisted phytoremediation toward air pollutants: Current trends and future directions,” Environ. Technol. Innov., vol. 31, p. 103140, 2023, doi: https://doi.org/10.1016/j.eti.2023.103140.

[20] M. Rabani et al., “Microbial-assisted phytoremediation,” 2022, pp. 91–114. doi: 10.1016/B978-0-323-89874-4.00006-6.

[21] B. S. M. Singh, D. Singh, and N. K. Dhal, “Enhanced phytoremediation strategy for sustainable management of heavy metals and radionuclides,” Case Stud. Chem. Environ. Eng., vol. 5, p. 100176, 2022, doi: https://doi.org/10.1016/j.cscee.2021.100176.

[22] M. I. H. Z. Bibi Saima Zeb Qaisar Mahmood and R. Wang, “Sustainable treatment of combined industrial wastewater: synergistic phytoremediation with Eichhornia crassipes, Pistia stratiotes, and Arundo donax in biofilm wetlands,” Int. J. Phytoremediation, vol. 0, no. 0, pp. 1–7, 2024, doi: 10.1080/15226514.2024.2403037.

[23] G. Kaushik and A. Chel, “Microbubble technology: Emerging field for water treatment,” Bubble Sci. Eng. Technol., vol. 5, pp. 33–38, Jul. 2014, doi: 10.1179/1758897914Y.0000000010.

[24] Y. Sompura, S. Bhardwaj, G. Selwal, V. Soni, and K. Ashokkumar, “Unrevealing the potential of aquatic macrophytes for phytoremediation in heavy metal-polluted wastewater,” J. Curr. Opin. Crop Sci., vol. 5, pp. 48–61, Mar. 2024, doi: 10.62773/jcocs.v5i1.233.

[25] M. Manzoor, I. Gul, A. Manzoor, J. Kallerhoff, and M. Arshad, “Optimization of integrated phytoremediation system (IPS) for enhanced lead removal and restoration of soil microbial activities,” Chemosphere, vol. 277, p. 130243, 2021, doi: https://doi.org/10.1016/j.chemosphere.2021.130243.

[26] S. Rasool et al., “Evaluation of Phytoremediation Potential of an Aquatic Macrophyte (Eichhornia crassipes) in Wastewater Treatment,” Sustainability, vol. 15, no. 15, 2023, doi: 10.3390/su151511533.

[27] M. F. Imron et al., “Phytotechnology for domestic wastewater treatment: Performance of Pistia stratiotes in eradicating pollutants and future prospects,” J. Water Process Eng., vol. 51, p. 103429, 2023, doi: https://doi.org/10.1016/j.jwpe.2022.103429.

[28] N. Liu et al., “Non-phytoremediation and phytoremediation technologies of integrated remediation for water and soil heavy metal pollution: A comprehensive review,” Sci. Total Environ., vol. 948, p. 174237, 2024, doi: https://doi.org/10.1016/j.scitotenv.2024.174237.

Downloads

Published

2024-05-30

How to Cite

Enhancing domestic wastewater treatment efficiency through combined microbubble oxidation and pistia stratiotes phytoremediation. (2024). Waste Treatment and Environmental Remediation Journal, 1(1), 20-15. https://journal.globalscitechpublishing.com/index.php/wter/article/view/4