Recycling aluminum foil waste as a sustainable coagulant for wastewater treatment: A case study on TSS and turbidity reduction

Authors

  • Muhammad Syahrul Hidayat Universitas PGRI Adi Buana Author
  • Dian Majid Universitas PGRI Adi Buana Author
  • Hanin Fathan Nurfina Istiqomah Universitas Bakti Indonesia Author

Keywords:

foil-based, alternative, sustainable, efficiency, compared

Abstract

Water pollution caused by industrial and domestic wastewater poses a significant challenge globally, with Total Suspended Solids (TSS) and turbidity being critical indicators of water quality. This study investigates the feasibility and effectiveness of aluminum foil waste as a recycled coagulant for wastewater treatment. Aluminum foil, a common yet underutilized waste material, was processed into a coagulant using chemical and thermal treatments and tested for its performance in reducing TSS and turbidity. Results demonstrated a dose-dependent performance, with TSS and turbidity reductions increasing from 14% and 9% at 1 mg/L to 48% and 44% at 5 mg/L, respectively. While the aluminum foil-based coagulant exhibited lower efficiency compared to conventional coagulants such as alum and ferric chloride, its sustainable nature and cost-effectiveness make it a viable alternative for less demanding applications. By repurposing waste aluminum foil, this approach aligns with the principles of a circular economy, addressing both water pollution and waste management challenges.

Downloads

Download data is not yet available.

Author Biographies

  • Muhammad Syahrul Hidayat , Universitas PGRI Adi Buana

    Department of Environmental Engineering

  • Dian Majid, Universitas PGRI Adi Buana

    Department of Environmental Engineering

  • Hanin Fathan Nurfina Istiqomah, Universitas Bakti Indonesia

    Universitas Bakti Indonesia

References

[1] Z. Lv, X. Ran, J. Liu, Y. Feng, X. Zhong, and N. Jiao, “Effectiveness of Chemical Oxygen Demand as an Indicator of Organic Pollution in Aquatic Environments,” Ocean. Res., vol. 3, Jun. 2024, doi: 10.34133/olar.0050.

[2] I. Bashir, F. A. Lone, R. A. Bhat, S. A. Mir, Z. A. Dar, and S. A. Dar, “Concerns and Threats of Contamination on Aquatic Ecosystems,” in Bioremediation and Biotechnology, Cham: Springer International Publishing, 2020, pp. 1–26. doi: 10.1007/978-3-030-35691-0_1.

[3] M. Al Kholif, M. Rohmah, I. Nurhayati, D. Adi Walujo, and D. Dian Majid, “Penurunan Beban Pencemar Rumah Potong Hewan (RPH) Menggunakan Sistem Biofilter Anaerob,” J. Sains Teknol. Lingkung., vol. 14, no. 2, pp. 100–113, 2022, [Online]. Available: https://journal.uii.ac.id/JSTL/article/view/23979

[4] F. B. Laksono, D. Majid, and A. R. Prabowo, “System and eco-material design based on slow-release ferrate(vi) combined with ultrasound for ballast water treatment,” vol. 12, no. 1, pp. 401–408, 2022, doi: doi:10.1515/eng-2022-0042.

[5] D. Majid, A. R. Prabowo, M. Al-Kholif, and S. Sugito, “Sintesis Ferrat sebagai Pendegradasi Senyawa Turunan Benzena,” JPSE (Journal Phys. Sci. Eng., vol. 3, no. 2, pp. 70–75, 2019, doi: 10.17977/um024v3i22018p070.

[6] I. Nurhayati, S. Vigiani, and D. Majid, “Penurunan kadar besi dan kromium limbah cair laboratorium teknik lingkungan dengan pengenceran, koagulasi dan adsobsi,” ECOTROPHIC J. Ilmu Lingkung. (Journal Environ. Sci., vol. 14, p. 74, Jun. 2020, doi: 10.24843/EJES.2020.v14.i01.p07.

[7] M. Dian and K. Il-Kyu, “Degradation of Toluene by Liquid Ferrate(VI) and Solid Ferrate(VI) in Aqueous Phase,” J. Environ. Eng., vol. 144, no. 9, pp. 4018093 1–8, Sep. 2018, doi: 10.1061/(ASCE)EE.1943-7870.0001440.

[8] D. Majid, I.-K. Kim, F. B. Laksono, and A. R. Prabowo, “Oxidative Degradation of Hazardous Benzene Derivatives by Ferrate(VI): Effect of Initial pH, Molar Ratio and Temperature,” Toxics, vol. 9, no. 12, pp. 1–10, 2021, doi: 10.3390/toxics9120327.

[9] R. Nur, H. Kaimudin, and D. Majid, “Penggunaan Limbah Cangkang Keong Sawah ( Pila Ampullacea ) Sebagai Koagulan Dalam Menurunkan Kekeruhan Pada Limbah Cair Domestik,” pp. 1–7, 2024.

[10] D. Majid and I. Kim, “Sintesis dan Aplikasi Ferrat sebagai Green Chemical dalam Pengolahan Limbah,” SNHRP, pp. 184–189, 2019.

[11] M. A. Febrianto, A. Sujiwa, M. Shofwan, and D. Majid, “Penurunan Kadar Bod, Cod Dan Turbidity Limbah Cair Industri Batik Melalui Metode Kombinasi Pretreatment Filtrasi Adsorpsi Dan Elektrokoagulasi,” J. Reka Lingkung., vol. 11, no. 3, pp. 258–269, 2024, doi: 10.26760/rekalingkungan.v11i3.258-269.

[12] Muhammad Al Kholif, Muhammad Uke Dwi Putra, Joko Sutrisno, Sugito, Dian Majid, and Indah Nurhayati, “Peningkatan Kualitas Air Bersih Sumur Gali Menggunakan TeknologiFiltrasi,” J. Sains dan Teknol. Lingkung., vol. 16, no. 2, 2024.

[13] D. Majid and A. R. Prabowo, “Ferrate(VI) performance on the halogenated benzene degradation: Degradation test and by-product analysis,” Mater. Today Proc., 2022, doi: https://doi.org/10.1016/j.matpr.2022.02.470.

[14] I. W. Tuye, J. Sutrisno, and D. Majid, “Potensi salvinia molesta dan pistia stratiotes dalam penurunan kadar fosfat, BOD, dan COD pada limbah cair laundry,” WAKTU J. Tek. UNIPA, vol. 21, no. 02, Jul. 2023, doi: 10.36456/waktu.v21i02.7727.

[15] S. Xie, “Biosorption of heavy metal ions from contaminated wastewater: an eco-friendly approach,” Green Chem. Lett. Rev., vol. 17, no. 1, p. 2357213, Dec. 2024, doi: 10.1080/17518253.2024.2357213.

[16] D. Diver, I. Nhapi, and W. R. Ruziwa, “The potential and constraints of replacing conventional chemical coagulants with natural plant extracts in water and wastewater treatment,” Environ. Adv., vol. 13, p. 100421, 2023, doi: https://doi.org/10.1016/j.envadv.2023.100421.

[17] Y. Lyu, H. ye, Z. Zhao, and L. Chen, “Exploring the cost of wastewater treatment in a chemical industrial Park: Model development and application,” Resour. Conserv. Recycl., vol. 155, p. 104663, Feb. 2020, doi: 10.1016/j.resconrec.2019.104663.

[18] H. Almohamadi, A. L. Khan, A. AlKassem, W. Sindi, S. Alrashdi, and T. Alhazmi, “Innovative recycling and conversion of aluminum waste to hydrogen and aluminum chloride: Enhancing economic feasibility and sustainability in Saudi Arabia,” Chem. Eng. Res. Des., vol. 212, pp. 143–157, 2024, doi: https://doi.org/10.1016/j.cherd.2024.10.020.

[19] E. C. Ngeno et al., “Sustainable re-utilization of waste materials as adsorbents for water and wastewater treatment in Africa: Recent studies, research gaps, and way forward for emerging economies,” Environ. Adv., vol. 9, p. 100282, 2022, doi: https://doi.org/10.1016/j.envadv.2022.100282.

[20] E. Khader, T. Mohammed, and N. Mirghaffari, “Use of Natural Coagulants for Removal of COD, Oil and Turbidity from Produced Waters in the Petroleum Industry,” J. Pet. Environ. Biotechnol., vol. 9, p. 7, Jul. 2018, doi: 10.4172/2157-7463.10003741.

[21] S. Packiam, R. Srikrishnaperumal, and R. Gandhimathi, “Effectiveness of natural coagulants from non-plant-based sources for water and wastewater treatment—A review,” Desalin. Water Treat., vol. 52, Sep. 2014, doi: 10.1080/19443994.2013.812993.

[22] B. Abderrezzaq, D. Kerroum, Z. Amrouci, O. Baatache, K. Amel, and A. P. Pizzi, “Application of Plant-Based Coagulants and Their Mechanisms in Water Treatment: A Review,” J. Renew. Mater., vol. 12, pp. 1–10, Jan. 2024, doi: 10.32604/jrm.2024.048306.

[23] S. Zahmatkesh, M. Karimian, Z. Chen, and B.-J. Ni, “Combination of coagulation and adsorption technologies for advanced wastewater treatment for potable water reuse: By ANN, NSGA-II, and RSM,” J. Environ. Manage., vol. 349, p. 119429, 2024, doi: https://doi.org/10.1016/j.jenvman.2023.119429.

[24] S. Nimesha, C. Hewawasam, D. J. Jayasanka, Y. Murakami, N. Araki, and N. Maharjan, “Effectiveness of natural coagulants in water and wastewater treatment,” Glob. J. Environ. Sci. Manag., vol. 8, no. 1, pp. 101–116, 2022, doi: 10.22034/gjesm.2022.01.08.

[25] A. Wu et al., “A comparative study on aggregation and sedimentation of natural goethite and artificial Fe3O4 nanoparticles in synthetic and natural waters based on extended Derjaguin–Landau–Verwey–Overbeek (XDLVO) theory and molecular dynamics simulations,” J. Hazard. Mater., vol. 435, p. 128876, 2022, doi: https://doi.org/10.1016/j.jhazmat.2022.128876.

[26] D. Pernitsky and J. Edzwald, “Selection of alum and polyaluminum coagulants: Principles and applications,” J. Water Supply Res. Technol. - AQUA, vol. 55, pp. 121–141, Mar. 2006, doi: 10.2166/aqua.2006.062.

[27] A. Patchaiyappan and S. P. Devipriya, “Chapter 5 - Application of plant-based natural coagulants in water treatment,” in Cost Effective Technologies for Solid Waste and Wastewater Treatment, S. Kathi, S. Devipriya, and K. Thamaraiselvi, Eds. Elsevier, 2022, pp. 51–58. doi: https://doi.org/10.1016/B978-0-12-822933-0.00012-7.

[28] R. M. El-taweel et al., “A review of coagulation explaining its definition, mechanism, coagulant types, and optimization models; RSM, and ANN,” Curr. Res. Green Sustain. Chem., vol. 6, p. 100358, 2023, doi: https://doi.org/10.1016/j.crgsc.2023.100358.

[29] Y. Xu, T. Chen, F. Cui, and W. Shi, “Effect of reused alum-humic-flocs on coagulation performance and floc characteristics formed by aluminum salt coagulants in humic-acid water,” Chem. Eng. J., vol. 287, 2015, doi: 10.1016/j.cej.2015.11.017.

[30] K. Bell-Ajy, M. Abbaszadegan, E. Ibrahim, D. Verges, and M. LeChevallier, “Conventional and optimized coagulation for NOM removal,” J. Am. Water Work. Assoc. - J AMER WATER Work ASSN, vol. 92, pp. 44–58, Oct. 2000, doi: 10.1002/j.1551-8833.2000.tb09023.x.

[31] J. R. Balbinoti et al., “Plant-based coagulants for food industry wastewater treatment,” J. Water Process Eng., vol. 52, p. 103525, 2023, doi: https://doi.org/10.1016/j.jwpe.2023.103525.

Downloads

Published

2024-06-30

How to Cite

Recycling aluminum foil waste as a sustainable coagulant for wastewater treatment: A case study on TSS and turbidity reduction. (2024). Results in Applied Science and Engineering Journal, 1(1), 20-26. https://journal.globalscitechpublishing.com/index.php/rase/article/view/10