Integrated adsorption and electrocoagulation for sustainable batik wastewater treatment: Synergistic optimization of pollutant removal

Authors

  • Mohammad Maghfur Ali Universitas PGRI Adi Buana Author
  • Maulidio Saputra Universitas PGRI Adi Buana Author
  • Dian Majid Universitas PGRI Adi Buana Author
  • Alasi Taiwo Kamorudeen University of Ilesa Author

Keywords:

pollutants, COD, BOD, turbidity, degradation

Abstract

The batik industry is an essential cultural and economic activity, yet it generates significant environmental challenges due to untreated wastewater containing synthetic dyes, heavy metals, and organic pollutants. These pollutants, resistant to conventional degradation methods, necessitate advanced and integrated treatment solutions. This study evaluates the combined application of adsorption and electrocoagulation for treating batik wastewater. Adsorption doses (10 g/L, 20 g/L, 30 g/L) using activated carbon and electrocoagulation at varying current densities (10 mA/cm², 20 mA/cm², 30 mA/cm²) were systematically analyzed for their effectiveness in removing chemical oxygen demand (COD), biological oxygen demand (BOD), and turbidity. Results revealed that higher adsorption doses and current densities improved removal efficiencies synergistically. Maximum removal efficiencies of 57% for COD, 46% for BOD, and 68% for turbidity were achieved under optimal conditions (30 g/L adsorption dose and 30 mA/cm² current density). These findings demonstrate the feasibility of an integrated adsorption-electrocoagulation approach as a scalable and sustainable solution for treating complex wastewater streams in the batik industry.

Downloads

Download data is not yet available.

Author Biographies

  • Mohammad Maghfur Ali , Universitas PGRI Adi Buana

    Department of Environmental Engineering

  • Maulidio Saputra , Universitas PGRI Adi Buana

    Department of Environmental Engineering

  • Dian Majid, Universitas PGRI Adi Buana

    Department of Environmental Engineering

  • Alasi Taiwo Kamorudeen , University of Ilesa

    University of Ilesa

References

[1] M. Islam, M. Mamun, A. F. M. F. Halim, R. Peila, and D. Sanchez Ramírez, “Current trends in textile wastewater treatment—bibliometric review,” Environ. Sci. Pollut. Res., vol. 31, pp. 1–19, Feb. 2024, doi: 10.1007/s11356-024-32454-3.

[2] M. Al Kholif, M. Rohmah, I. Nurhayati, D. Adi Walujo, and D. Dian Majid, “Penurunan Beban Pencemar Rumah Potong Hewan (RPH) Menggunakan Sistem Biofilter Anaerob,” J. Sains Teknol. Lingkung., vol. 14, no. 2, pp. 100–113, 2022, [Online]. Available: https://journal.uii.ac.id/JSTL/article/view/23979

[3] F. B. Laksono, D. Majid, and A. R. Prabowo, “System and eco-material design based on slow-release ferrate(vi) combined with ultrasound for ballast water treatment,” vol. 12, no. 1, pp. 401–408, 2022, doi: doi:10.1515/eng-2022-0042.

[4] D. Majid and A. R. Prabowo, “Ferrate(VI) performance on the halogenated benzene degradation: Degradation test and by-product analysis,” Mater. Today Proc., 2022, doi: https://doi.org/10.1016/j.matpr.2022.02.470.

[5] I. W. Tuye, J. Sutrisno, and D. Majid, “Potensi salvinia molesta dan pistia stratiotes dalam penurunan kadar fosfat, BOD, dan COD pada limbah cair laundry,” WAKTU J. Tek. UNIPA, vol. 21, no. 02, Jul. 2023, doi: 10.36456/waktu.v21i02.7727.

[6] D. Majid, A. R. Prabowo, M. Al-Kholif, and S. Sugito, “Sintesis Ferrat sebagai Pendegradasi Senyawa Turunan Benzena,” JPSE (Journal Phys. Sci. Eng., vol. 3, no. 2, pp. 70–75, 2019, doi: 10.17977/um024v3i22018p070.

[7] I. Nurhayati, S. Vigiani, and D. Majid, “Penurunan kadar besi dan kromium limbah cair laboratorium teknik lingkungan dengan pengenceran, koagulasi dan adsobsi,” ECOTROPHIC J. Ilmu Lingkung. (Journal Environ. Sci., vol. 14, p. 74, Jun. 2020, doi: 10.24843/EJES.2020.v14.i01.p07.

[8] M. Dian and K. Il-Kyu, “Degradation of Toluene by Liquid Ferrate(VI) and Solid Ferrate(VI) in Aqueous Phase,” J. Environ. Eng., vol. 144, no. 9, pp. 4018093 1–8, Sep. 2018, doi: 10.1061/(ASCE)EE.1943-7870.0001440.

[9] D. Majid, I.-K. Kim, F. B. Laksono, and A. R. Prabowo, “Oxidative Degradation of Hazardous Benzene Derivatives by Ferrate(VI): Effect of Initial pH, Molar Ratio and Temperature,” Toxics, vol. 9, no. 12, pp. 1–10, 2021, doi: 10.3390/toxics9120327.

[10] R. Nur, H. Kaimudin, and D. Majid, “Penggunaan Limbah Cangkang Keong Sawah ( Pila Ampullacea ) Sebagai Koagulan Dalam Menurunkan Kekeruhan Pada Limbah Cair Domestik,” pp. 1–7, 2024.

[11] D. Majid and I. Kim, “Sintesis dan Aplikasi Ferrat sebagai Green Chemical dalam Pengolahan Limbah,” SNHRP, pp. 184–189, 2019.

[12] M. A. Febrianto, A. Sujiwa, M. Shofwan, and D. Majid, “Penurunan Kadar Bod, Cod Dan Turbidity Limbah Cair Industri Batik Melalui Metode Kombinasi Pretreatment Filtrasi Adsorpsi Dan Elektrokoagulasi,” J. Reka Lingkung., vol. 11, no. 3, pp. 258–269, 2024, doi: 10.26760/rekalingkungan.v11i3.258-269.

[13] Muhammad Al Kholif, Muhammad Uke Dwi Putra, Joko Sutrisno, Sugito, Dian Majid, and Indah Nurhayati, “Peningkatan Kualitas Air Bersih Sumur Gali Menggunakan TeknologiFiltrasi,” J. Sains dan Teknol. Lingkung., vol. 16, no. 2, 2024.

[14] K. Bharathi and S. Ramesh, “Removal of dyes using agricultural waste as low-cost adsorbents: A review,” Appl. Water Sci., vol. 3, Dec. 2013, doi: 10.1007/s13201-013-0117-y.

[15] N. Tyagi, S. Mathur, and D. Poswal, “Electrocoagulation process for textile wastewater treatment in continuous upflow reactor,” J. Sci. Ind. Res. (India)., vol. 73, pp. 195–198, Mar. 2014.

[16] M. Y. A. Mollah, R. Schennach, J. R. Parga, and D. L. Cocke, “Electrocoagulation (EC) — science and applications,” J. Hazard. Mater., vol. 84, no. 1, pp. 29–41, 2001, doi: https://doi.org/10.1016/S0304-3894(01)00176-5.

[17] W. Li, J. Lv, Y. Yue, Y. Wang, J. Zhang, and G. Qian, “A review of enhanced adsorption removal of odor contaminants with low ppm concentration levels: the key to technological breakthrough as well as challenges,” J. Hazard. Mater., vol. 482, p. 136512, 2025, doi: https://doi.org/10.1016/j.jhazmat.2024.136512.

[18] C. Tang et al., “Enhanced adsorption of organic pollutants using N-doped porous carbon derived from hemp stems: Insights into the mechanism,” Sep. Purif. Technol., vol. 333, p. 125878, 2024, doi: https://doi.org/10.1016/j.seppur.2023.125878.

[19] D. Japri, N. Kasmuri, N. Zaini, K. Abdul Hamid, S. Nayono, and A. Mojiri, “The Efficacy of Activated Carbon from Organic Waste in Treating Wastewater Effluent,” Int. J. Sustain. Constr. Eng. Technol., vol. 15, pp. 271–286, Jul. 2024.

[20] P. S. Pamidimukkala and H. Soni, “Efficient removal of organic pollutants with activated carbon derived from palm shell: Spectroscopic characterisation and experimental optimisation,” J. Environ. Chem. Eng., vol. 6, no. 2, pp. 3135–3149, 2018, doi: https://doi.org/10.1016/j.jece.2018.04.013.

[21] Y. Siong, M. Atabaki, and J. Idris, “Performance of activated carbon in water filters,” Water Resour., Jan. 2013.

[22] M. S. Akhtar, S. Ali, and W. Zaman, “Innovative Adsorbents for Pollutant Removal: Exploring the Latest Research and Applications,” Molecules, vol. 29, no. 18, 2024, doi: 10.3390/molecules29184317.

[23] P. Agarwal, V. K. Sangal, and S. Mathur, “Improving the performance of the electro-coagulation process through efficient flocculation,” IOP Conf. Ser. Earth Environ. Sci., vol. 1326, no. 1, p. 12133, Jun. 2024, doi: 10.1088/1755-1315/1326/1/012133.

[24] H. A. Moreno-Casillas, D. L. Cocke, J. A. G. Gomes, P. Morkovsky, J. R. Parga, and E. Peterson, “Electrocoagulation mechanism for COD removal,” Sep. Purif. Technol., vol. 56, no. 2, pp. 204–211, 2007, doi: https://doi.org/10.1016/j.seppur.2007.01.031.

[25] W. Reátegui-Romero et al., “Effect of current density on COD removal efficiency for wastewater using the electrocoagulation process,” Desalin. Water Treat., vol. 184, pp. 15–29, 2020, doi: https://doi.org/10.5004/dwt.2020.25341.

[26] S. Alkurdi and A. Abbar, “Removal of COD from Petroleum refinery Wastewater by Electro-Coagulation Process Using SS/Al electrodes,” IOP Conf. Ser. Mater. Sci. Eng., vol. 870, p. 12052, 2020, doi: 10.1088/1757-899X/870/1/012052.

[27] K. Sadeddin, A. Naser, and A. Firas, “Removal of turbidity and suspended solids by electro-coagulation to improve feed water quality of reverse osmosis plant,” Desalination, vol. 268, no. 1, pp. 204–207, 2011, doi: https://doi.org/10.1016/j.desal.2010.10.027.

[28] U. S. Behera, S. Poddar, and H.-S. Byun, “Electrocoagulation treatment of wastewater collected from Haldia industrial region: Performance evaluation and comparison of process optimization,” Water Res., vol. 268, p. 122716, 2025, doi: https://doi.org/10.1016/j.watres.2024.122716.

[29] N. S. Graça and A. E. Rodrigues, “The Combined Implementation of Electrocoagulation and Adsorption Processes for the Treatment of Wastewaters,” Clean Technologies, vol. 4, no. 4. pp. 1020–1053, 2022. doi: 10.3390/cleantechnol4040063.

[30] I. Linares-Hernández, C. Barrera-Díaz, G. Roa-Morales, B. Bilyeu, and F. Ureña-Núñez, “A combined electrocoagulation–sorption process applied to mixed industrial wastewater,” J. Hazard. Mater., vol. 144, no. 1, pp. 240–248, 2007, doi: https://doi.org/10.1016/j.jhazmat.2006.10.015.

Downloads

Published

2024-06-30

How to Cite

Integrated adsorption and electrocoagulation for sustainable batik wastewater treatment: Synergistic optimization of pollutant removal. (2024). Results in Applied Science and Engineering Journal, 1(1), 07-13. https://journal.globalscitechpublishing.com/index.php/rase/article/view/8