Synergistic removal of heavy metals and turbidity in electroplating wastewater through zeolite pre-treatment and electrocoagulation
Keywords:
adsorption, chromium, pollutant, optimal, reducedAbstract
Electroplating industries produce wastewater containing high levels of heavy metals and other pollutants, posing serious environmental and health risks. This study examines a two-stage treatment approach combining zeolite adsorption as a pre-treatment and electrocoagulation as a primary treatment. Zeolite adsorption effectively reduced chromium (Cr) and turbidity by 49.12% and 40%, respectively, at an optimal dosage of 15 g/L, significantly lowering the pollutant load for subsequent treatment. The electrocoagulation process further enhanced removal, achieving maximum reductions in Cr (82.76%) and turbidity (80.95%) at a voltage of 30 V and a treatment duration of 90 minutes. This integrated system demonstrated a synergistic effect, addressing the limitations of standalone technologies by combining the high adsorption capacity of zeolite with the coagulant generation efficiency of electrocoagulation. Additionally, the method minimized sludge generation and reduced operational costs, offering a sustainable and effective solution for electroplating wastewater treatment. The study provides valuable insights for optimizing industrial wastewater management to meet stringent environmental standards.
Downloads
References
[1] T. E. Oladimeji, M. Oyedemi, M. E. Emetere, O. Agboola, J. B. Adeoye, and O. A. Odunlami, “Review on the impact of heavy metals from industrial wastewater effluent and removal technologies,” Heliyon, vol. 10, no. 23, p. e40370, 2024, doi: https://doi.org/10.1016/j.heliyon.2024.e40370.
[2] S. Das, K. W. Sultana, A. R. Ndhlala, M. Mondal, and I. Chandra, “Heavy Metal Pollution in the Environment and Its Impact on Health: Exploring Green Technology for Remediation,” Environ. Health Insights, vol. 17, Jan. 2023, doi: 10.1177/11786302231201259.
[3] M. Al Kholif, M. Rohmah, I. Nurhayati, D. Adi Walujo, and D. Dian Majid, “Penurunan Beban Pencemar Rumah Potong Hewan (RPH) Menggunakan Sistem Biofilter Anaerob,” J. Sains Teknol. Lingkung., vol. 14, no. 2, pp. 100–113, 2022, [Online]. Available: https://journal.uii.ac.id/JSTL/article/view/23979
[4] F. B. Laksono, D. Majid, and A. R. Prabowo, “System and eco-material design based on slow-release ferrate(vi) combined with ultrasound for ballast water treatment,” vol. 12, no. 1, pp. 401–408, 2022, doi: doi:10.1515/eng-2022-0042.
[5] D. Majid and A. R. Prabowo, “Ferrate(VI) performance on the halogenated benzene degradation: Degradation test and by-product analysis,” Mater. Today Proc., 2022, doi: https://doi.org/10.1016/j.matpr.2022.02.470.
[6] I. W. Tuye, J. Sutrisno, and D. Majid, “Potensi salvinia molesta dan pistia stratiotes dalam penurunan kadar fosfat, BOD, dan COD pada limbah cair laundry,” WAKTU J. Tek. UNIPA, vol. 21, no. 02, Jul. 2023, doi: 10.36456/waktu.v21i02.7727.
[7] D. Majid, A. R. Prabowo, M. Al-Kholif, and S. Sugito, “Sintesis Ferrat sebagai Pendegradasi Senyawa Turunan Benzena,” JPSE (Journal Phys. Sci. Eng., vol. 3, no. 2, pp. 70–75, 2019, doi: 10.17977/um024v3i22018p070.
[8] I. Nurhayati, S. Vigiani, and D. Majid, “Penurunan kadar besi dan kromium limbah cair laboratorium teknik lingkungan dengan pengenceran, koagulasi dan adsobsi,” ECOTROPHIC J. Ilmu Lingkung. (Journal Environ. Sci., vol. 14, p. 74, Jun. 2020, doi: 10.24843/EJES.2020.v14.i01.p07.
[9] M. Dian and K. Il-Kyu, “Degradation of Toluene by Liquid Ferrate(VI) and Solid Ferrate(VI) in Aqueous Phase,” J. Environ. Eng., vol. 144, no. 9, pp. 4018093 1–8, Sep. 2018, doi: 10.1061/(ASCE)EE.1943-7870.0001440.
[10] D. Majid, I.-K. Kim, F. B. Laksono, and A. R. Prabowo, “Oxidative Degradation of Hazardous Benzene Derivatives by Ferrate(VI): Effect of Initial pH, Molar Ratio and Temperature,” Toxics, vol. 9, no. 12, pp. 1–10, 2021, doi: 10.3390/toxics9120327.
[11] R. Nur, H. Kaimudin, and D. Majid, “Penggunaan Limbah Cangkang Keong Sawah ( Pila Ampullacea ) Sebagai Koagulan Dalam Menurunkan Kekeruhan Pada Limbah Cair Domestik,” pp. 1–7, 2024.
[12] D. Majid and I. Kim, “Sintesis dan Aplikasi Ferrat sebagai Green Chemical dalam Pengolahan Limbah,” SNHRP, pp. 184–189, 2019.
[13] M. A. Febrianto, A. Sujiwa, M. Shofwan, and D. Majid, “Penurunan Kadar Bod, Cod Dan Turbidity Limbah Cair Industri Batik Melalui Metode Kombinasi Pretreatment Filtrasi Adsorpsi Dan Elektrokoagulasi,” J. Reka Lingkung., vol. 11, no. 3, pp. 258–269, 2024, doi: 10.26760/rekalingkungan.v11i3.258-269.
[14] Muhammad Al Kholif, Muhammad Uke Dwi Putra, Joko Sutrisno, Sugito, Dian Majid, and Indah Nurhayati, “Peningkatan Kualitas Air Bersih Sumur Gali Menggunakan TeknologiFiltrasi,” J. Sains dan Teknol. Lingkung., vol. 16, no. 2, 2024.
[15] M. Mahmood, M. Barbooti, A. Balasim, A. Altameemi, M. Al-Terehi, and N. Al-Shuwaiki, “Removal of Heavy Metals Using Chemicals Precipitation,” Eng. Technol. J., vol. 29, Mar. 2011, doi: 10.30684/etj.29.3.15.
[16] A. Tahreen, “Role of electrocoagulation in wastewater treatment: A developmental review,” J. Water Process Eng., vol. 37, 2020, doi: 10.1016/j.jwpe.2020.101440.
[17] S. Wang and Y. Peng, “Natural zeolites as effective adsorbents in water and wastewater treatment,” Chem. Eng. J., vol. 156, pp. 11–24, Jan. 2010, doi: 10.1016/j.cej.2009.10.029.
[18] O. Abdelwahab and W. M. Thabet, “Natural zeolites and zeolite composites for heavy metal removal from contaminated water and their applications in aquaculture Systems: A review,” Egypt. J. Aquat. Res., vol. 49, no. 4, pp. 431–443, 2023, doi: https://doi.org/10.1016/j.ejar.2023.11.004.
[19] M. Hong et al., “Heavy metal adsorption with zeolites: The role of hierarchical pore architecture,” Chem. Eng. J., vol. 359, pp. 363–372, 2019, doi: https://doi.org/10.1016/j.cej.2018.11.087.
[20] A. Hirai, K. Sato, T. Hoshi, and T. Aoyagi, “Improvement of Adsorption Capacity by Refined Encapsulating Method of Activated Carbon into the Hollow-Type Spherical Bacterial Cellulose Gels for Oral Absorbent,” Gels, vol. 10, no. 11, 2024, doi: 10.3390/gels10110723.
[21] I. Kinoti, J. Ogunah, C. M’thiruaine, and J. M. Marangu, “Adsorption of Heavy Metals in Contaminated Water Using Zeolite Derived from Agro-Wastes and Clays: A Review,” J. Chem., vol. 2022, pp. 1–25, Sep. 2022, doi: 10.1155/2022/4250299.
[22] Y. Liu et al., “Clinoptilolite based zeolite-geopolymer hybrid foams: Potential application as low-cost sorbents for heavy metals,” J. Environ. Manage., vol. 330, p. 117167, 2023, doi: https://doi.org/10.1016/j.jenvman.2022.117167.
[23] E. Wibowo et al., “Reduction of rainwater turbidity using zeolite,” J. Phys. Conf. Ser., vol. 2673, p. 12005, Dec. 2023, doi: 10.1088/1742-6596/2673/1/012005.
[24] N. Jiang, R. Shang, S. G. J. Heijman, and L. C. Rietveld, “High-silica zeolites for adsorption of organic micro-pollutants in water treatment: A review,” Water Res., vol. 144, pp. 145–161, 2018, doi: https://doi.org/10.1016/j.watres.2018.07.017.
[25] N. Finish, P. Ramos, E. J. C. Borojovich, O. Zeiri, Y. Amar, and M. Gottlieb, “Zeolite performance in removal of multicomponent heavy metal contamination from wastewater,” J. Hazard. Mater., vol. 457, p. 131784, 2023, doi: https://doi.org/10.1016/j.jhazmat.2023.131784.
[26] Y. Yu, Y. Zhong, W. Sun, J. Xie, M. Wang, and Z. Guo, “A novel electrocoagulation process with centrifugal electrodes for wastewater treatment: Electrochemical behavior of anode and kinetics of heavy metal removal,” Chemosphere, vol. 310, p. 136862, 2023, doi: https://doi.org/10.1016/j.chemosphere.2022.136862.
[27] I. D. Tegladza, Q. Xu, K. Xu, G. Lv, and J. Lu, “Electrocoagulation processes: A general review about role of electro-generated flocs in pollutant removal,” Process Saf. Environ. Prot., vol. 146, pp. 169–189, 2021, doi: https://doi.org/10.1016/j.psep.2020.08.048.
[28] S. U. Khan et al., “Efficacy of Electrocoagulation Treatment for the Abatement of Heavy Metals: An Overview of Critical Processing Factors, Kinetic Models and Cost Analysis,” Sustainability, vol. 15, no. 2, 2023, doi: 10.3390/su15021708.
[29] S. Binahmed, G. Ayoub, M. Al-Hindi, and F. Azizi, “The effect of fast mixing conditions on the coagulation–flocculation process of highly turbid suspensions using liquid bittern coagulant,” Desalin. Water Treat., vol. 53, pp. 1–9, Jul. 2014, doi: 10.1080/19443994.2014.933043.
[30] M. Yao, N. Jun, and T. Chen, “Effect of particle size distribution on turbidity under various water quality levels during flocculation processes,” Desalination, vol. 354, pp. 116–124, Dec. 2014, doi: 10.1016/j.desal.2014.09.029.
[31] T. Matos, M. S. Martins, R. Henriques, and L. M. Goncalves, “A review of methods and instruments to monitor turbidity and suspended sediment concentration,” J. Water Process Eng., vol. 64, p. 105624, 2024, doi: https://doi.org/10.1016/j.jwpe.2024.105624.
[32] S. Boinpally, A. Kolla, J. Kainthola, R. Kodali, and J. Vemuri, “A state-of-the-art review of the electrocoagulation technology for wastewater treatment,” Water Cycle, vol. 4, pp. 26–36, 2023, doi: https://doi.org/10.1016/j.watcyc.2023.01.001.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Muhammad Akbar Febrianto, Dian Majid, Sri Sulystyaningsih Natalia Daeng (Author)

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.